Učni načrt predmeta

Predmet:
Detekcija vodika v materialih in v plinasti fazi
Course:
Hydrogen Detection in Materials and in Gas Phase
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Senzorske tehnologije, 3. stopnja / 1 1
Sensor technologies, 3rd cycle / 1 1
Vrsta predmeta / Course type
Izbirni
Univerzitetna koda predmeta / University course code:
ST3-540
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
doc. dr. Sabina Markelj
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
Slovenski ali angleški / Slovene or English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij druge stopnje ustrezne (naravoslovne ali tehniške) smeri ali zaključen študij drugih smeri z dokazanim poznavanjem osnov področja predmeta (pisna dokazila, pogovor).

Completed second cycle studies in natural sciences or engineering or completed second cycle studies in other fields with proven knowledge of fundamentals in the field of this course (certificates, interview).

Vsebina:
Content (Syllabus outline):

- Vodik –atom/molekula: energijski potenciali, ionizacijski preseki.
- Interakcija vodika z materiali: procesi na površini, adsorpcija in absorpcija v material, difuzija, termodesorpcija.
- Detekcija vodikovih molekul in atomov: produkcija atomov in vzbujenih molekul, izvori, spektrometri, masni spektrometer.
- Detekcija vodika in njegovih izotopov v materialih z ionskimi metodami: spektroskopija elastično odrinjenih jeder – ERDA; spektroskopija z jedrsko metodo NRA; spremljanje procesov in situ.
- Površinske tehnike za detekcijo vodika in nečistoč na površini.
- Vodik v fuziji: zadrževanje in recikliranje vodika na stenah fuzijskih naprav.

- Hydrogen – atom/molecule: potential energy, cross sections for ionization.
- Interaction of hydrogen with materials: surface processes, adsorption, absorption in material, diffusion, thermal desorption.
- Hydrogen atom and molecule detection: production of atoms and excited molecules, sources, spectrometers, mass spectrometer.
- Hydrogen detection in materials with ion beam methods: Elastic Recoil Detection Analysis – ERDA; Nuclear Reaction Analysis –NRA; in situ measurements.
- Surface techniques for detection of hydrogen and surface impurities.
- Hydrogen in fusion: retention and recycling of hydrogen on walls of fusion devices.

Temeljna literatura in viri / Readings:

Izbrani znanstveni članki v / Selected scientific publications in:
- Surface Science
- Journal of Chemical Physics
- Nuclear Instruments and Methods in Physics Research Section B
- Journal of Nuclear Material

Knjiga/Book:
- Ibach, Physics of Surfaces and Interfaces, Springer, 2006, page 80
- Christman, Introduction To Surface Physical Chemistry, Springer 1991
- Fromm, Kinetics of Metal-Gas Interaction at low tempeartures, Springer 1998, page 28-40
- Dynamics of molecule surface interactions, G. D. Billing, John Willey and Sons, 2000, New York.
- Handbook of Modern Ion Beam Materials Analysis, Y. Wang, M. Nastasi, Cambridge University Press,
2010.
- Clark and Reiter, Nuclear Fusion research, Understanding Plasma-Surface Interactions, Springer 2005
- Chu, W.-K., Mayer, J. W. & Nicolet, M.-A. Backscattering Spectrometry. (Academic Press, 1978).

Cilji in kompetence:
Objectives and competences:

Cilji:
- poznavanje in razumevanje procesov pri interakciji vodika z materiali,
- analiza podatkov, merjenih s spektrometri za detekcijo vodika, npr. masnim spektrometrom, vibracijskim spektrometrom,
- analiza podatkov, merjenih z ionskimi metodami (ERDA in NRA), s katerimi določimo vsebnost vodika v materialu.

Kompetence:
- opredelitev procesov, ki so bistveni za določen primer interakcije vodika z materialom in reševanje enačbe za izbrani problem,
- obvladovanje osnovnega orodja za simulacijo in analizo spektra, dobljenega iz spektrometra za detekcijo vodika in spektra, dobljenega z ionskimi metodami,
- sposobnost izbiranja metod, s katerimi bi dobil potrebno informacijo o vodiku v materialu,
- upoštevanje danih sistemskih, tehnoloških in finančnih okvirov pri snovanju analize materiala,
- sposobnost izvedbe eksperimentalnih meritev na enem od možnih sistemov za detekcijo vodika in analiza podatkov z dosegljivimi orodji.

Objectives:
- knowledge and understanding the processes at hydrogen interaction with materials,
- analysis of the data measured by spectrometers for hydrogen detection, e.g. mass spectrometer, vibrational spectrometer,
- analysis the data measured by ion beam methods (ERDA and NRA) used to quantify the hydrogen concentration in material.

Competences:
- capability to determine the relevant processes for certain case of hydrogen interaction with material and to solve equations for given problem,
- mastering of software for simulation and analysis of spectra obtained by spectrometer for hydrogen detection and spectra obtained by ion beam methods,
- capability of choosing the most suitable method(s) for obtaining the needed information about hydrogen in material,
- applying project-given technological, systemic, temporal and financial constraints for the material analysis,
- ability of performing experimental measurement on one of the possible systems for hydrogen detection and analyses the data with the available tools.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Znanje in razumevanje:
- detekcijskih metod kot so termodesorpcija, vibracijska spektroskopija, ionske metode za detekcijo vodika v materialih,
- razumevanje procesov pri interakciji atomov in molekul z materiali,
- vodika v fuziji,
- vključevanje teh dosežkov v reševanje problemov v sklopu disertacije.

Knowledge and understanding of:
- detection methods such as thermal desorption, vibrational spectroscopy, ion methods for hydrogen detection in materials,
- understanding of processes at hydrogen atom and molecule interaction with materials,
- hydrogen in fusion,
- integration of these achievements in solving problems within the framework of the thesis.

Metode poučevanja in učenja:
Learning and teaching methods:

Interaktivno delo s študentom.
Učenje prepoznavanja struktur in vzorcev znanja in reševanje realnih problemov.

Interactive work with student.
Knowledge structures and pattern recognition, and solving real problems.

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminarska naloga z opisom izbrane spektroskopije in njenih aplikacij, po možnosti iz problematike, ki je najbližje kandidatovemu raziskovalnemu področju
50 %
Seminar describing particular spectroscopy and its applications in a research field close to the candidate
Projekt kvantitativne analize spektra
20 %
Project of quantitative analysis of spectrum
Ustni izpit
30 %
Oral examination
Reference nosilca / Lecturer's references:
1. Markelj, S., Pečovnik, M., Schwarz-Selinger, T. & Kelemen, M. The synergies between displacement damage creation and hydrogen presence: the effect of D ion energy and flux. Phys. Scr. 97, 024006 (2022).
2. Pečovnik, M., Hodille, E. A., Schwarz-Selinger, T., Grisolia, C. & Markelj, S. New rate equation model to describe the stabilization of displacement damage by hydrogen atoms during ion irradiation in tungsten. Nucl. Fusion 60, 036024 (2020).
3. Markelj, S. et al. Deuterium transport and retention in the bulk of tungsten containing helium: the effect of helium concentration and microstructure. Nucl. Fusion 60, 106029 (2020).
4. Markelj, S. et al. Determination of Tritium-Helium-3 differential cross-section in the energy range between 0.6 MeV and 3.3 MeV for tritium depth profiling in solids. Nuclear Materials and Energy 38, 101586 (2024).
5. Markelj, S. et al. The effect of nanocrystalline microstructure on deuterium transport in displacement damaged tungsten. Nuclear Materials and Energy 37, 101509 (2023).