Učni načrt predmeta

Predmet:
Modeliranje v okolju
Course:
Modeling in the Environment
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Ekotehnologije, 3. stopnja / 1 1
Ecotechnologies, 3rd cycle / 1 1
Vrsta predmeta / Course type
Izbirni
Univerzitetna koda predmeta / University course code:
EKO3-758
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Milena Horvat
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključena druga stopnja bolonjskega študija ali univerzitetni študijski program.

Completed Bologna second level program or university type of undergraduate education.

Vsebina:
Content (Syllabus outline):

Predmet "Modeliranje v okolju" se osredotoča na uporabo matematičnih in računalniških modelov za razumevanje in napovedovanje obnašanja onesnaževal v različnih okoljskih medijih, kot so zrak, voda in tla. Poudarek je na modeliranju procesov, ki vplivajo na transport, širjenje in usodo onesnaževal v okolju ter na interakcijah med različnimi okoljskimi kompartmenti (npr. atmosfera, hidrosfera, litosfera, biosfera).

Glavne vsebine predmeta vključujejo:

Osnove okoljskega modeliranja:
Uvod v osnovne koncepte okoljskega modeliranja, vključno s pregledom različnih vrst modelov (npr. deterministični, stohastični, dinamični).
Pregled matematičnih orodij in metod, ki se uporabljajo pri modeliranju okoljskih procesov.

Modeliranje transporta onesnaževal v zraku:
Osnove atmosferske dinamike in procesov, ki vplivajo na transport onesnaževal v zraku (npr. advekcija, difuzija, sedimentacija, kemijske reakcije).
Modeli za napovedovanje širjenja onesnaževal v atmosferi (npr. Gaussovi plumski modeli, Lagrangevi in Eulerjevi modeli).
Uporaba teh modelov za oceno vplivov na kakovost zraka in za oceno širjenja onesnaževal od lokalnih do globalnih meril.

Modeliranje transporta onesnaževal v vodi:
Hidrodinamični procesi, ki vplivajo na transport onesnaževal v rekah, jezerih, morjih in podzemnih vodah.
Modeliranje disperzije, advekcije, sedimentacije in biogeokemijskih procesov, ki vplivajo na usodo onesnaževal v vodnih telesih.
Uporaba modelov za napovedovanje širjenja onesnaževal v površinskih in podzemnih vodah, ter za oceno vplivov na kakovost vode.

Modeliranje transporta onesnaževal med okoljskimi kompartmenti:
Interakcije med zrakom, vodo, tlemi in bioto ter modeliranje prenosa onesnaževal med temi kompartmenti.
Modeli za oceno celostnega vpliva onesnaževal na okolje, vključno z akumulacijo v različnih okoljskih medijih in njihovim dolgoročnim vplivom na ekosisteme.
Primeri modeliranja kroženja onesnaževal v globalnem okolju in njihovega vpliva na podnebne spremembe.

Kalibracija, validacija in optimizacija modelov:
Metode za kalibracijo in validacijo modelov z uporabo eksperimentalnih podatkov in meritev iz okolja.
Praktični pristopi k izboljšanju natančnosti modelov ter ocena zanesljivosti modelnih napovedi.
Optimizacija modelnih parametrov s pomočjo naprednih algoritmov (npr. genetski algoritmi, Monte Carlo metode).

Praktična uporaba modelov v raziskovalnih projektih:
Primeri uporabe okoljskih modelov v realnih raziskovalnih in aplikativnih projektih.
Povezava med modeliranjem in odločitvenimi procesi pri upravljanju okolja in načrtovanju okoljskih politik.
Razvoj modelov kot orodje za oceno vplivov na okolje (EIA) in strateško okoljsko presojo (SEA).

The course "Environmental Modeling" focuses on the use of mathematical and computational models to understand and predict the behavior of pollutants in various environmental media, such as air, water, and soil. The emphasis is on modeling the processes that influence the transport, dispersion, and fate of pollutants in the environment and on the interactions between different environmental compartments (e.g., atmosphere, hydrosphere, lithosphere, biosphere).

The main topics of the course include:

Fundamentals of Environmental Modeling:

Introduction to basic concepts of environmental modeling, including an overview of different types of models (e.g., deterministic, stochastic, dynamic).
Review of mathematical tools and methods used in the modeling of environmental processes.

Modeling the Transport of Pollutants in Air:

Basics of atmospheric dynamics and processes that affect the transport of pollutants in the air (e.g., advection, diffusion, sedimentation, chemical reactions).
Models for predicting the dispersion of pollutants in the atmosphere (e.g., Gaussian plume models, Lagrangian and Eulerian models).
Application of these models for assessing air quality impacts and predicting the dispersion of pollutants from local to global scales.

Modeling the Transport of Pollutants in Water:

Hydrodynamic processes that affect the transport of pollutants in rivers, lakes, seas, and groundwater.
Modeling of dispersion, advection, sedimentation, and biogeochemical processes that influence the fate of pollutants in water bodies.
Use of models to predict the dispersion of pollutants in surface and groundwater and to assess impacts on water quality.

Modeling the Transport of Pollutants between Environmental Compartments:

Interactions between air, water, soil, and biota and the modeling of pollutant transfer between these compartments.
Models for assessing the overall impact of pollutants on the environment, including accumulation in various environmental media and their long-term effects on ecosystems.
Examples of modeling pollutant cycling in the global environment and their impact on climate change.

Calibration, Validation, and Optimization of Models:

Methods for calibrating and validating models using experimental data and environmental measurements.
Practical approaches to improving model accuracy and assessing the reliability of model predictions.
Optimization of model parameters using advanced algorithms (e.g., genetic algorithms, Monte Carlo methods).

Practical Application of Models in Research Projects:

Examples of using environmental models in real-world research and applied projects.
The connection between modeling and decision-making processes in environmental management and policy planning.
Development of models as tools for Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA).

Temeljna literatura in viri / Readings:

"Environmental Modelling: An Uncertain Future?" by Keith Beven, Leto izdaje: 2009, Založnik: Routledge
Knjiga obravnava različne pristope k okoljskemu modeliranju z osredotočenostjo na negotovost in kompleksnost okoljskih sistemov, kar je ključno za razvoj naprednih modelov.

"Introduction to Environmental Modeling" by William G. Gray and Genetha A. Gray, Leto izdaje: 2017, Založnik: Cambridge University Press
Ta učbenik ponuja jasen uvod v osnovne koncepte in tehnike okoljskega modeliranja, vključno z modeliranjem transporta in širjenja onesnaževal.

"Fundamentals of Ecological Modelling: Applications in Environmental Management and Research" by Sven Erik Jørgensen and Brian D. Fate, Leto izdaje: 2011 (4. izdaja), Založnik: Elsevier
Knjiga se osredotoča na ekološko modeliranje in vključuje primere uporabe modelov za upravljanje in raziskave v okoljskih znanostih.

"Air Quality Modeling: Theories, Methodologies, Computational Techniques, and Available Databases and Software" by Paolo Zannetti, Leto izdaje: 2013, Založnik: Springer
Ta knjiga pokriva modeliranje kakovosti zraka in vključuje teorije, metodologije ter tehnike, ki so bistvene za modeliranje transporta onesnaževal v zraku.

Selected journal articles from journals such as:
Environmental Modelling & Software
Journal of Environmental Management
Water Resources Research
Atmospheric Environment
Environmental Science & Technology
Journal of Hydrology
Ecological Modelling
Journal of Environmental Informatics

Cilji in kompetence:
Objectives and competences:

Študenti bodo pridobili poglobljeno znanje o modeliranju okoljskih procesov, razvili bodo sposobnost uporabe naprednih modelov za analizo in napovedovanje širjenja onesnaževal ter spoznali vlogo teh modelov pri reševanju okoljskih problemov in oblikovanju politik za varstvo okolja.
Kompetence

Analitične sposobnosti: Študenti bodo razvili sposobnost kritične analize in interpretacije rezultatov okoljskih modelov, kar jim bo omogočilo reševanje kompleksnih okoljskih problemov.

Tehnične veščine: Študenti bodo pridobili praktične spretnosti pri uporabi matematičnih in računalniških orodij za modeliranje procesov in transporta onesnaževal v različnih okoljskih medijih.

Interdisciplinarno znanje: Študenti bodo povezali znanja iz različnih področij (npr. kemija, fizika, hidrologija, meteorologija) za celostno razumevanje okoljskih procesov in interakcij med okoljskimi kompartmenti.

Praktična uporaba modelov: Študenti bodo sposobni uporabljati modele za oceno vplivov onesnaževal na okolje in za podporo pri odločanju v okoljskem upravljanju.

Reševanje problemov: Študenti bodo usposobljeni za uporabo modelov pri identifikaciji in reševanju specifičnih okoljskih izzivov, vključno z razvojem modelnih scenarijev za oceno različnih rešitev.

Course Objectives

Students will acquire in-depth knowledge of environmental process modeling, develop the ability to use advanced models for analyzing and predicting the dispersion of pollutants, and understand the role of these models in solving environmental problems and shaping environmental protection policies.
Competencies

Analytical Skills: Students will develop the ability to critically analyze and interpret the results of environmental models, enabling them to solve complex environmental problems.

Technical Skills: Students will gain practical skills in using mathematical and computational tools for modeling processes and pollutant transport in various environmental media.

Interdisciplinary Knowledge: Students will integrate knowledge from various fields (e.g., chemistry, physics, hydrology, meteorology) to achieve a comprehensive understanding of environmental processes and interactions between environmental compartments.

Practical Application of Models: Students will be capable of using models to assess the impact of pollutants on the environment and to support decision-making in environmental management.

Problem Solving: Students will be trained to use models for identifying and solving specific environmental challenges, including the development of model scenarios to evaluate different solutions.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Poglobljeno razumevanje okoljskih procesov: Študenti bodo pridobili temeljito razumevanje procesov, ki vplivajo na transport, širjenje in usodo onesnaževal v zraku, vodi, tleh in med različnimi okoljskimi kompartmenti.

Uporaba naprednih modelov za reševanje okoljskih problemov: Študenti bodo sposobni uporabljati napredne matematične in računalniške modele za analizo in napovedovanje širjenja onesnaževal ter za oblikovanje scenarijev reševanja specifičnih okoljskih izzivov.

Analiza in interpretacija rezultatov okoljskih modelov: Študenti bodo razvili zmožnost kritične analize in interpretacije rezultatov modelov, kar jim bo omogočilo učinkovito reševanje kompleksnih okoljskih problemov in podporo pri odločanju v okoljskem upravljanju.

Interdisciplinarno razumevanje okoljskih znanosti: Študenti bodo pokazali sposobnost povezovanja znanj iz različnih znanstvenih disciplin (npr. kemija, fizika, hidrologija, meteorologija) za celostno razumevanje okoljskih procesov.

Praktične veščine v okoljskem modeliranju: Študenti bodo pridobili praktične veščine za uporabo modelov pri ocenjevanju vplivov onesnaževal na okolje, pri načrtovanju okoljskih ukrepov ter pri strateškem načrtovanju in oblikovanju okoljskih politik.

Samostojno reševanje okoljskih problemov: Študenti bodo razvili sposobnost samostojnega reševanja okoljskih problemov z uporabo modelov, vključno z oblikovanjem in vrednotenjem različnih možnih rešitev za specifične okoljske izzive.

In-Depth Understanding of Environmental Processes:

Students will acquire a thorough understanding of the processes that influence the transport, dispersion, and fate of pollutants in the air, water, soil, and between different environmental compartments.
Application of Advanced Models to Solve Environmental Problems:

Students will be capable of using advanced mathematical and computational models to analyze and predict the dispersion of pollutants and to develop scenarios for addressing specific environmental challenges.
Analysis and Interpretation of Environmental Model Results:

Students will develop the ability to critically analyze and interpret model results, enabling them to effectively solve complex environmental problems and support decision-making in environmental management.
Interdisciplinary Understanding of Environmental Sciences:

Students will demonstrate the ability to integrate knowledge from various scientific disciplines (e.g., chemistry, physics, hydrology, meteorology) for a comprehensive understanding of environmental processes.
Practical Skills in Environmental Modeling:

Students will gain practical skills in using models to assess the impacts of pollutants on the environment, in planning environmental measures, and in strategic planning and policy-making for environmental protection.
Independent Problem-Solving in Environmental Issues:

Students will develop the ability to independently solve environmental problems using models, including designing and evaluating different possible solutions for specific environmental challenges.

Metode poučevanja in učenja:
Learning and teaching methods:

V primeru, da je vpisanih več kot 10 študentov: predavanja, študenti dobijo krajše naloge, rešitev katerih predelajo skupaj s predavateljem na ustnem izpitu, kjer dobijo še dodatna vprašanja.

V primeru, da je vpisanih manj kot 10 študentov: nekaj urni sestanek predavatelja s študenti, kjer študenti opišejo svoje dotedanje študijske in (eventualno) praktične izkušnje. Vsak študent dobi individualno seminarsko nalogo. Rešitev in zagovor naloge je pogoj za priznanje izpita.

If more than 10 students: lectures, the students obtain individual tasks. At the exam students present the solution of the tasks, and together with answers to additional questions the lecturer decides for the exam.

If less than 10 students: Meeting with students, where they describe their previous education and practical work. Each student obtains an individual seminar. Solution and presentation of the seminar is the condition for the acknowledgement of the exam.

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminarska naloga
50 %
Seminar work
Zagovor seminarske naloge, pri katerem se dokaže osvojitev predvidenih študijskih rezultatov
50 %
Defence of the seminar work where the students demonstrate they master the learning outcomes of the course
Reference nosilca / Lecturer's references:
1. ŽIVKOVIĆ, Igor, GAČNIK, Jan, JOZIĆ, Slaven, KOTNIK, Jože, ŠOLIĆ, Mladen, HORVAT, Milena. A simplified approach to modeling the dispersion of mercury from precipitation to surface waters—The Bay of Kaštela case study. Journal of marine science and engineering. 2022, vol. 10, no. 4, str. 539-1-539-13. ISSN 2077-1312. DOI: 10.3390/jmse10040539.
2. SARIGIANNIS, Dimosthenis, SNOJ TRATNIK, Janja, MAZEJ, Darja, KOSJEK, Tina, HEATH, Ester, HORVAT, Milena, ANESTI, Ourania, KARAKITSIOS, Spyros P. Risk characterization of bisphenol-A in the Slovenian population starting from human biomonitoring data. Environmental research : multidisciplinary journal of environmental sciences, ecology, and public health. 2019, vol. 170, str. 293-300. ISSN 0013-9351. DOI: 10.1016/j.envres.2018.12.056.
3. KATSONOURI, Andromachi, SNOJ TRATNIK, Janja, HORVAT, Milena, et al. HBM4EU-MOM: Prenatal methylmercury-exposure control in five countries through suitable dietary advice for pregnancy – Study design and characteristics of participants. International journal of hygiene and environmental health. 2023, vol. 252, [article no.] 114213, str. 1-11, ilustr. ISSN 1438-4639
4. Dušan Žagar, Ana Knap, John J. Warwick, Rudi Rajar, Milena Horvat, Matjaž Četina, Modelling of mercury transport and transformation processes in the Idrijca and Soča river system, Science of The Total Environment, Volume 368, Issue 1, 2006, Pages 149-163, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2005.09.068.
5. GAČNIK, Jan, ŽIVKOVIĆ, Igor, RIBEIRO GUEVARA, Sergio, KOTNIK, Jože, BERISHA, Sabina, VIJAYAKUMARAN NAIR, Sreekanth, JUROV, Andrea, CVELBAR, Uroš, HORVAT, Milena. Calibration approach for gaseous oxidized mercury based on nonthermal plasma oxidation of elemental mercury. Analytical chemistry. [Print ed.]. 2022, vol. 94, iss. 23, str. 8234-8240, ilustr. ISSN 0003-2700