Predmet "Modeliranje v okolju" se osredotoča na uporabo matematičnih in računalniških modelov za razumevanje in napovedovanje obnašanja onesnaževal v različnih okoljskih medijih, kot so zrak, voda in tla. Poudarek je na modeliranju procesov, ki vplivajo na transport, širjenje in usodo onesnaževal v okolju ter na interakcijah med različnimi okoljskimi kompartmenti (npr. atmosfera, hidrosfera, litosfera, biosfera).
Glavne vsebine predmeta vključujejo:
Osnove okoljskega modeliranja:
Uvod v osnovne koncepte okoljskega modeliranja, vključno s pregledom različnih vrst modelov (npr. deterministični, stohastični, dinamični).
Pregled matematičnih orodij in metod, ki se uporabljajo pri modeliranju okoljskih procesov.
Modeliranje transporta onesnaževal v zraku:
Osnove atmosferske dinamike in procesov, ki vplivajo na transport onesnaževal v zraku (npr. advekcija, difuzija, sedimentacija, kemijske reakcije).
Modeli za napovedovanje širjenja onesnaževal v atmosferi (npr. Gaussovi plumski modeli, Lagrangevi in Eulerjevi modeli).
Uporaba teh modelov za oceno vplivov na kakovost zraka in za oceno širjenja onesnaževal od lokalnih do globalnih meril.
Modeliranje transporta onesnaževal v vodi:
Hidrodinamični procesi, ki vplivajo na transport onesnaževal v rekah, jezerih, morjih in podzemnih vodah.
Modeliranje disperzije, advekcije, sedimentacije in biogeokemijskih procesov, ki vplivajo na usodo onesnaževal v vodnih telesih.
Uporaba modelov za napovedovanje širjenja onesnaževal v površinskih in podzemnih vodah, ter za oceno vplivov na kakovost vode.
Modeliranje transporta onesnaževal med okoljskimi kompartmenti:
Interakcije med zrakom, vodo, tlemi in bioto ter modeliranje prenosa onesnaževal med temi kompartmenti.
Modeli za oceno celostnega vpliva onesnaževal na okolje, vključno z akumulacijo v različnih okoljskih medijih in njihovim dolgoročnim vplivom na ekosisteme.
Primeri modeliranja kroženja onesnaževal v globalnem okolju in njihovega vpliva na podnebne spremembe.
Kalibracija, validacija in optimizacija modelov:
Metode za kalibracijo in validacijo modelov z uporabo eksperimentalnih podatkov in meritev iz okolja.
Praktični pristopi k izboljšanju natančnosti modelov ter ocena zanesljivosti modelnih napovedi.
Optimizacija modelnih parametrov s pomočjo naprednih algoritmov (npr. genetski algoritmi, Monte Carlo metode).
Praktična uporaba modelov v raziskovalnih projektih:
Primeri uporabe okoljskih modelov v realnih raziskovalnih in aplikativnih projektih.
Povezava med modeliranjem in odločitvenimi procesi pri upravljanju okolja in načrtovanju okoljskih politik.
Razvoj modelov kot orodje za oceno vplivov na okolje (EIA) in strateško okoljsko presojo (SEA).
The course "Environmental Modeling" focuses on the use of mathematical and computational models to understand and predict the behavior of pollutants in various environmental media, such as air, water, and soil. The emphasis is on modeling the processes that influence the transport, dispersion, and fate of pollutants in the environment and on the interactions between different environmental compartments (e.g., atmosphere, hydrosphere, lithosphere, biosphere).
The main topics of the course include:
Fundamentals of Environmental Modeling:
Introduction to basic concepts of environmental modeling, including an overview of different types of models (e.g., deterministic, stochastic, dynamic).
Review of mathematical tools and methods used in the modeling of environmental processes.
Modeling the Transport of Pollutants in Air:
Basics of atmospheric dynamics and processes that affect the transport of pollutants in the air (e.g., advection, diffusion, sedimentation, chemical reactions).
Models for predicting the dispersion of pollutants in the atmosphere (e.g., Gaussian plume models, Lagrangian and Eulerian models).
Application of these models for assessing air quality impacts and predicting the dispersion of pollutants from local to global scales.
Modeling the Transport of Pollutants in Water:
Hydrodynamic processes that affect the transport of pollutants in rivers, lakes, seas, and groundwater.
Modeling of dispersion, advection, sedimentation, and biogeochemical processes that influence the fate of pollutants in water bodies.
Use of models to predict the dispersion of pollutants in surface and groundwater and to assess impacts on water quality.
Modeling the Transport of Pollutants between Environmental Compartments:
Interactions between air, water, soil, and biota and the modeling of pollutant transfer between these compartments.
Models for assessing the overall impact of pollutants on the environment, including accumulation in various environmental media and their long-term effects on ecosystems.
Examples of modeling pollutant cycling in the global environment and their impact on climate change.
Calibration, Validation, and Optimization of Models:
Methods for calibrating and validating models using experimental data and environmental measurements.
Practical approaches to improving model accuracy and assessing the reliability of model predictions.
Optimization of model parameters using advanced algorithms (e.g., genetic algorithms, Monte Carlo methods).
Practical Application of Models in Research Projects:
Examples of using environmental models in real-world research and applied projects.
The connection between modeling and decision-making processes in environmental management and policy planning.
Development of models as tools for Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA).