Učni načrt predmeta

Predmet:
Avtomatizirano modeliranje dinamičnih sistemov s primeri uporabe v ekologiji
Course:
Automated Modeling of Dynamic Systems with Ecological Applications
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Ekotehnologije, 3. stopnja / 1 1
Ecotechnologies, 3rd cycle / 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
EKO3-787
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Sašo Džeroski
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Izpolnjeni morajo biti pogoji za vpis na doktorski študij: zaključena druga stopnja bolonjskega študija ali diploma univerzitetnega študijskega programa. Potrebna so tudi osnovna znanja biologije oz. ekologije ter računalništva oz. informatike.

Students must fulfill the formal requirements for enrolling to the doctoral study program: completed Bologna second-cycle study program or an equivalent pre-Bologna university study program. Basic knowledge of biology or ecology and computer science or informatics is also required.

Vsebina:
Content (Syllabus outline):

Uvod: Modeliranje dinamičnih sistemov:
Modeliranje prostora stanj in vhodov-izhodov Modeli v diskretnem in zveznem času
Parametrični in neparametrični modeli
Kvalitativni in kvantitativni modeli

Sklepanje s parametričnimi modeli:
Simulacija
Identifikacija oz. optimizacija parametrov Strukturna identifikacija

Učenje neparametričnih modelov v diskretnem času

Učenje procesno osnovanih modelov:
Predstavitev procesnih modelov
Metode za učenje procesnih modelov

Primeri uporabe oz. študije primerov avtomatiziranega modeliranja ekosistemov in epidemij.

Introduction: Modeling dynamic systems:
State-space and input-output models
Discrete and continuous-time models
Parametric and non-parametric models
Qualitative and quantitative models

Reasoning with parametric models:
Simulation
Parameter fitting / identification
Structure identification

Learning non-parametric discrete time models

Learning process-based models:
Representation: Entities, Processes, Libraries
Learning methods: LAGRAMGE, ProBMoT

Applications:
Case studies in automated modeling of aquatic ecosystems and epidemiology

Temeljna literatura in viri / Readings:

Izbrana poglavja iz naslednjih knjig: / Selected chapters from the following books:
- Mobus, G.E., and Kalton, M.C. Principles of Systems Science. Springer, 2015. ISBN 978-1-493-91919-2.
- Joergensen, S.E., and Fath, B. Fundamentals of Ecological Modelling: Applications in Environmental
Management and Research. Elsevier, 2011. ISBN 978-0-444-53567-2.
- Džeroski S., and Todorovski L., editors. Computational Discovery of Scientific Knowledge:
Introduction, Techniques, and Applications in Environmental and Life Sciences. Springer, 2007. ISBN 978-3-540-73919-7.
- Hannon, B., and Ruth, M. Modeling Dynamic Biological Systems. 2nd edition. Springer, 2014. ISBN
978-3-319-05614-2.

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je seznaniti študenta s področjem avtomatiziranega modeliranja dinamičnih sistemov, vključno z osnovnimi pojmi in sodobnimi metodami.

Kompetence študenta z uspešno zaključenim predmetom bodo vključevale razumevanje osnovnih pojmov, poznavanje sodobnih metod in sposobnost samostojne uporabe teh metod pri novih nalogah modeliranja ekosistemov in okoljskih sistemov.

The course objective is to familiarize the student with the field of automated modeling of dynamic systems, including basic concepts and state of the art methods.

The competencies of the students successfully completing this course will include the understanding of basic concepts from the field, familiarity with the state-of-the art methods, and capability of independent use of the methods in new practical projects of modeling ecological and environmental systems.

Predvideni študijski rezultati:
Intendeded learning outcomes:

- Dobiti pregled obstoječih nalog in metod avtomatiziranega modeliranja dinamičnih sistemov ter primerov njihove uporabe v ekologiji
- Pridobiti sposobnost uporabe obstoječih metod na novih problemih
- Pridobiti sposobnost ugotavljanja primernosti različnih pristopov za avtomatizirano modeliranje različnih ekosistemov

- Acquiring an overview of existing tasks and methods in automated modelling of dynamic systems and case studies of their use in ecology
- Obtaining the ability to apply existing methods to new problems
- Obtaining the ability to identify the best methodological approach available for solving specific problems of automated modeling of different ecosystems

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, konzultacije, samostojno delo

Lectures, consultations, individual work

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Ustni izpit
50 %
Oral exam
Seminarska naloga
25 %
Seminar work
Ustni zagovor
25 %
Oral defense
Reference nosilca / Lecturer's references:
1. J Brence, S Džeroski, L Todorovski (2023) Dimensionally-consistent equation discovery through probabilistic attribute grammars. Information Sciences 632, 742-756, DOI: 10.1016/j.ins.2023.03.073
2. S Nikoloski, D Kocev, J Levatić, DP Wall, S Džeroski (2021) Exploiting partially-labeled data in learning predictive clustering trees for multi-target regression: A case study of water quality assessment in Ireland. Ecological Informatics 61, 101161, DOI: 10.1016/j.ecoinf.2020.101161
3. M Radinja, M Škerjanec, M Šraj, S Džeroski, L Todorovski, N Atanasova (2021) Automated modelling of urban runoff based on domain knowledge and equation discovery. Journal of Hydrology 603, 127077, DOI: 10.1016/j.jhydrol.2021.127077
4. J Tanevski, L Todorovski, S Džeroski (2020) Combinatorial search for selecting the structure of models of dynamical systems with equation discovery. Engineering Applications of Artificial Intelligence 89, 103423, DOI: 10.1016/j.engappai.2019.103423
5. N Simidjievski, L Todorovski, J Kocijan, S Džeroski (2020) Equation discovery for nonlinear system identification. IEEE Access 8, 29930-29943, DOI: 10.1109/ACCESS.2020.2972076