Učni načrt predmeta

Predmet:
Sinteza nanomaterialov
Course:
Synthesis of Nanomaterials
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Nanoznanosti in nanotehnologije, Informacijske in komunikacijske tehnologije, Ekotehnologije, Senzorske tehnologije, 3. stopnja / 1 1
Nanosciences and Nanotechnologies, Information and Communication Technologies, Ecotechnologies, Sensor Technologies, 3rd cycle / 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
NANO3-833
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 30 210 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Barbara Malič
Sodelavci / Lecturers:
prof. dr. Tadej Rojac , izr. prof. dr. Miha Čekada
Jeziki / Languages:
Predavanja / Lectures:
Slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij druge stopnje naravoslovne ali tehniške smeri ali zaključen študij drugih smeri z dokazanim poznavanjem osnov področja predmeta (pisna dokazila, pogovor).

Completed second level studies in natural sciences or engineering or completed second level studies in other fields with proven knowledge of fundamentals in the field of this course (certificates, interview).

Vsebina:
Content (Syllabus outline):

Splošno o nanomaterialih:
- razmerje površina / volumen,
- termodinamske osnove,
- skupine nanomaterialov: nanodelci, nanovlakna, plasti, (aero-)geli, nanostrukture,
- metode sinteze.

Sinteza nanodelcev:
- termodinamske osnove nukleacije nanodelcev,
- homo- / heterogena nukleacija,
- kinetika rasti delcev,
- problem aglomeracije, stabilizacija delcev,
- pregled kemijskih in fizikalnih metod sinteze nanodelcev.

Priprava plasti iz parne faze:
- vakuum, vakuumska tehnologija
- podlage – površinska energija
- nukleacija, epitaksija, mikrostruktura plasti,
- pregled in primerjava metod.

Priprava plasti iz raztopin:
- sinteza plasti iz raztopin (sol-gel),
- Langmuir-Blodgett,
- nukleacija in rast plasti,
- pregled in primerjava metod.

Kserogeli, aerogeli.

Nanostrukture: fizikalne in kemijske metode oblikovanja.

Metode karakterizacije nanomaterialov.

General introduction:
- surface /volume ratio,
- thermodynimcs,
- grouping of nanomaterials: particles, nanofibers, films, (aero-)gels, nanostructures,
- synthetic approaches (top-down, bottom-up).

Synthesis of nanoparticles:
- thermodynamics of nucleation,
- homo- / heterogeneous nucleation,
- growth of nanoparticles, kinetics,
- agglomeracije, stabilization of particles,
- chemical and physical methods of synthesis of particles.

Deposition of thin films from vapour phase:
- vacuum science and technology
- substrates, surface energy, types of growth from vapour phase
- nucleation, epitaxy, microstructure,
- methods of vapour deposition, comparison.

Solution deposition of thin films:
- sol-gel, chemical solution deposition
- substrates, nucleation layers
- nucleation, crystallization, evolution of microstructure
- Langmuir-Blodgett,
- Methods, equipment

Xerogels, aerogels.

Nanostructures: physical, chemical methods.

Methods of characterization of nanomaterials.

Temeljna literatura in viri / Readings:

- G. Cao, Nanostructures and Nanomaterials, Imperial College Press, London, 2004.
- T. Schneller, R. Waser, M. Kosec, D. Payne (Eds.), Chemical solution deposition of functional oxide thin films, Springer, Wien, 2013.
- S.D.Hoath (ed.), Fundamentals of Inkjet Printing, The Sicence of Inkjet and Droplets, Wiley, Weinheim, 2016.

Ciljani izbor in razprava o aktualnih znanstvenih objavah, predvsem v revijah Science, Nature (Nature Nanotechnology, Nature Materials), Advanced Functional Materials, Chemistry of Materials, ACS Nano / Targeted selection and discussion of scientific publications, particularly from Science, Nature (Nature Nanotechnology, Nature Materials), Advanced Functional Materials, Chemistry of Materials, ACS Nano

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je seznaniti študente s posebnimi lastnostmi nanomaterialov (nanodelci, nanovlakna, plasti, (aero-)geli, nanostrukture) in z metodami sinteze nanomaterialov.
Študent bo znal izbrati primerno metodo sinteze izbranega nanomateriala, poznal bo eksperimentalne omejitve ter prednosti oziroma slabosti posamezne metode.

Cilj se navezuje na kompetence:
- obvladovanje metod in tehnik sinteze nanomaterialov,
- sposobnost za samostojno in skupinsko raziskovalno in razvojno delo,
- sposobnost uporabe znanja v praksi in
- delno tudi razvoj integralnega načina mišljenja ter sposobnost za komunikacijo s strokovnjaki drugih disciplin in področij.

The objective of the course is to introduce to students special properties of nanomaterials (nanoparticles, nanofibers, films, (aero-)gels, nanostructures) and with methods of their synthesis.
The student will be able to select a suitable method of synthesis of a given nanomaterial, he will recognize experimental limitations, and advantages / disadvantages of a selected method.

This objective is related to competences:
- mastering of methods and techniques of synthesis of nanomaterials,
- ability to carry out independent as well as team R&D work,
- ability to use the knowledge in practice,
- and partially also to the development of an integral way of thinking and the ability to communicate with experts from other disciplines and fields.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Študent bo na osnovi pridobljenega znanja:
- obvladal kriterije primerjave različnih skupin nanomaterialov
- izbral primerno metodo sinteze izbranega nanomateriala
- napovedal rezultat izbrane sinteze nanomateriala
- ocenil prednosti in slabosti posamezne metode sinteze
- napovedal eksperimentalne omejitve posamezne metode sinteze
- izbral primerno metodo karakterizacije reakcijskega produkta
- znal interpretirati rezultate analiz
- vzpostavil sposobnost komunikacije v angleškem jeziku na področju sinteze nanomaterialov

The student will:
- Master the criteria of comparison of different groups of nanomaterials
- Select a suitable method of synthesis of a given nanomaterial
- Forecast the result of a selected synthesis
- Judge the advantages / disadvantages of a given method
- Forecast experimental limitations
- Select a suitable method of characterization of reaction products
- Interpret the results of the analysis
- Establish the ability to communicate in English in the field of synthesis of nanomaterials

Metode poučevanja in učenja:
Learning and teaching methods:

Interaktivna predavanja, seminar, delo v laboratoriju, konzultacije

Interactive lectures, seminar, work in laboratory, consultations

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminarska naloga
30
Seminar work
Zagovor seminarske naloge, pri katerem študent dokaže osvojitev vseh študijskih izidov z vsaj po enim konkretnim primerom
30
Defense of the seminar work where the student demonstrates the achievement of all learning outcomes with at least one specific case for each outcome
Ustni izpit
40
Oral exam
Reference nosilca / Lecturer's references:
1. KONSAGO, Sabi William, ŽIBERNA, Katarina, MATAVŽ, Aleksander, MANDAL, Barnik, GLINŠEK, Sebastjan, FLEMING, Yves, BENČAN, Andreja, BRENNECKA, Geoff, URŠIČ NEMEVŠEK, Hana, MALIČ, Barbara. Engineering the microstructure and functional properties of 0.5 B a ( Z r 0.2 T i 0.8 ) O 3 ‑ 0.5 ( B a 0.7 C a 0.3 ) T i O 3 thin films. ACS applied electronic materials. Jun. 2024, vol. 6, iss. 6, str. 4467-4477, ilustr. ISSN 2637-6113. https://pubs.acs.org/doi/10.1021/acsaelm.4c00530?ref=pdf, DOI: 10.1021/acsaelm.4c00530.
2. BRADEŠKO, Andraž, VRABELJ, Marko, FULANOVIĆ, Lovro, MALIČ, Barbara, ROJAC, Tadej, et al. Implications of acceptor doping in the polarization and electrocaloric response of 0.9 P b ( M g 1 / 3 N b 2 / 3 ) O 3 − 0.1 P b T i O 3 relaxor ferroelectric. Journal of materials chemistry. C, Materials for optical and electronic devices. [Print ed.]. 2021, iss. 9, str. 3204-3214, graf. prikazi. ISSN 2050-7526. DOI: 10.1039/D0TC05854H.
3. MATAVŽ, Aleksander, BENČAN, Andreja, KOVAČ, Janez, CHUNG, Ching-Chang, JONES, Jacob L., TROLIER-MCKINSTRY, Susan, MALIČ, Barbara, BOBNAR, Vid. Additive manufacturing of ferroelectric-oxide thin-film multilayer devices. ACS applied materials & interfaces. 2019, vol. 11, no. 48, str. 45155-45160. ISSN 1944-8244. DOI: 10.1021/acsami.9b17912.
4. IACOMINI, Antonio, KOBLAR, Maja, URŠIČ NEMEVŠEK, Hana, ROJAC, Tadej. Tuning the electrical conductivity and Maxwell-Wagner relaxation in B i F e O 3 − B a T i O 3 piezoceramics. Journal of the European Ceramic Society. [Online ed.]. Sep. 2024, vol. 44, iss. 12, str. 6948-6959, ilustr. ISSN 1873-619X. https://www.sciencedirect.com/science/article/pii/S095522192400373X?via%3Dihub, DOI: 10.1016/j.jeurceramsoc.2024.04.046.
5. PODGORNIK, Bojan, SEDLAČEK, Marko, ŠETINA, Barbara, ČEKADA, Miha. High temperature friction and galling properties of nanolayered (Cr,V)N coatings and effect of V content. Surface & coatings technology. [Print ed.]. 2022, vol. 465, article 129594, str. 1-12. ISSN 0257-8972. https://www.sciencedirect.com/science/article/pii/S0257897223003699?via%3Dihub, DOI: 10.1016/j.surfcoat.2023.129594.