Učni načrt predmeta

Predmet:
Teorija nanomaterialov
Course:
Theory of Nanomaterials
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Nanoznanosti in nanotehnologije, 3. stopnja / 1 1
Nanosciences and Nanotechnologijes, 3rd cycle / 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
NANO3-837
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 30 210 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Viktor Kabanov
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
Slovenski, angleški / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključena izobrazba druge stopnje ali univerzitetna izobrazba s področja naravoslovja ali tehnologije.

Completed second-cycle education or university education from natural sciences or technology.

Vsebina:
Content (Syllabus outline):

1. Pregled modernih metod statistične fizike, ki so pomembne v teoriji nanomaterialov, s poudarkom na teoriji faznih prehodov v neurejenih snoveh, npr. v spinskih steklih, relaksorjih in nanomagnetih.

2. Teorija nanocevk:
Struktura ogljikovih in anorganskih nanocevk. Simetrija, kvantna števila in izbirna pravila. Mrežna dinamika eno- in večslojnih nanocevk: fononski spektri in sorodne lastnosti: hitrost zvoka, specifična toplota, elastičnost.
Ramanski in infrardeči spektri.
Tribologija: (in)komenzurabilne cevke, teleskopski efekt (superdrseče stene), fazoni.
Elektronske lastnosti: elektronski pasovi, prevodnost.
Optični prehodi in optične lastnosti.

1. Overview of modern methods of statistical physics that are relevant in the theory of nanomaterials, with emphasis on the theory of phase transitions in disordered substances, e.g. in spin glasses, relaxors and nanomagnets.

2. Theory of nanotubes:
Structure of carbon and inorganic nanotubes. Symmetry, quantum numbers and selection rules. Network dynamic of single- and multi-layer nanotubes:
Phonon spectra and related properties: speed of sound, specific heat, elasticity.
Raman and infrared spectra.
Tribology: (in) commensurable tubes, telescopic effect (super-slip walls), phasons.
Electronic properties: Electronic belts, conductivity.
Optical transitions and optical properties.

Temeljna literatura in viri / Readings:

Zaradi hitrosti razvijajočega se področja so temeljni študijski viri objavljeni članki v zadnjih letih, predvsem v
revijah Science, Nature in Physical Review Letters. / Latest articles from following scientific journals:
Science, Nature and Physical Review Letters.

Kot dodatni viri so predvideni:
P. G. de Gennes, Simple views on condensed matter physics, World Scientific, 1992.
P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press,
2000.
J. M. Ziman, Models of Disorder, Cambridge University Press, 1979.
K. H. Fischer and J. A. Hertz, Spin Glasses, Cambridge University Press, 1991.
M. Dresselhaus, G. Dresselhaus, and P. C. Eklund: Science of Fullerenes and Carbon Nanotubes, Academic,
San Diego, 1998.
R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Prpoperties of Carbon Nanotubes, Imperial College
Press, London, 1998."

Cilji in kompetence:
Objectives and competences:

Študenti spoznajo najnovejše dosežke v teoriji nanomaterialov in se pripravijo za raziskovalno delo na področju nanomaterialov.

Splošne kompetence:
- obvladanje raziskovalnih metod, postopkov in procesov, razvoj kritične in samokritične presoje, - sposobnost uporabe znanja v praksi,
- razvoj komunikacijskih sposobnosti in spretnosti, posebej komunikacije v mednarodnem okolju,
- kooperativnost, delo v skupini (in v mednarodnem okolju).

Predmetnospecifične kompetence:
- Predmet pripravlja študente za uporabo znanja s področja teorije nanomaterialov.

Students become acquainted with the latest advancements in the theory of nanomaterials, and prepare themselves for research work in the field of nanomaterials.

General Competences:
- The student will master research methods, procedures and processes.
- The student will develop critical thinking.
- The student will develop communication skills to present research achievements in an international environment.
- Work in team (in international environment).

Course Specific Competences:
- This course prepares students to apply knowledge of the theory of nanomaterials.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Znanje in razumevanje:
- Razumevanje teorije nanomaterialov.

Vrednotenje in sinteza:
- Sposobnost izbire primernega modela za izbrane primere nanomaterialov.
- Sposobnost komuniciranja v angleškem jeziku na področju teorije nanomaterialov.

Knowledge and understanding:
- The student will understand the theory of nanomaterials.

Evaluation and synthesis:
- Ability to select a proper model for selected cases of nanomaterials.
- Ability to communicate in English in the field of theory of nanomaterials.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminarji, konzultacije, laboratorijsko delo

Lectures, seminar work, consultations, laboratory work

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminar
50 %
Seminar
Ustni izpit
50 %
Oral exam
Reference nosilca / Lecturer's references:
1. KABANOV, Viktor V. Symmetry-enforced Dirac points in antiferromagnetic semiconductors. Physical review. B, ISSN 2469-9950, 2019, vol. 99, no. 23, str. 235154-1-235154-5, doi: 10.1103/PhysRevB.99.235154.
2. GERASIMENKO, Yaroslav, VASKIVSKYI, Igor, LITSKEVICH, Maksim, RAVNIK, Jan, VODEB, Jaka, DIEGO, Michele, KABANOV, Viktor V., MIHAILOVIĆ, Dragan. Quantum jamming transition to a correlated electron glass in 1T-TaS[sub]2. Nature materials, ISSN 1476-1122, 2019, vol. 18, no. 10, str. 1078-1083, doi: 10.1038/s41563-019-0423-3.
3. RAVNIK, Jan, VASKIVSKYI, Yevhenii, VODEB, Jaka, AUPIČ, Polona, VASKIVSKYI, Igor, GOLEŽ, Denis, GERASIMENKO, Yaroslav, KABANOV, Viktor V., MIHAILOVIĆ, Dragan. Quantum billiards with correlated electrons confined in triangular transition metal dichalcogenide monolayer nanostructures. Nature communications, ISSN 2041-1723, 2021, vol. 12, no. 1, str. 3793-1-3793-8, doi: 10.1038/s41467-021-24073-0.
4. GRAZIOSI, Patrizio, BERGENTI, Ilaria, VISTOLI, Lorenzo, KABANOV, Viktor V., DEDIU, Valentin A., et al. Spin injection in the doped bad metal SrTiO3. Physical review research, ISSN 2643-1564, Aug./Oct. 2023, vol. 5, [article no.] 033096, str. 033096-1-033096-11, ilustr. https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5.033096, doi: 10.1103/PhysRevResearch.5.033096.
5. SHUMILIN, Andrei, KABANOV, Viktor V. Interface disorder as the cause for the kinetic Rashba-Edelstein effect and interface spin-Hall effect at a metal-insulator boundary. Physical review research, ISSN 2643-1564, Sep./Nov. 2023, vol. 5, iss. 3, [article no.] 033215, str. 033215-1-033215-9, ilustr. https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5.033215, doi: 10.1103/PhysRevResearch.5.033215.