Učni načrt predmeta

Predmet:
Molekulsko modeliranje s teorijo gostotnega funkcionala (DFT): molekule, površine in trdnine
Course:
Molecular modeling using density functional theory: molecules, surfaces, and bulk solids
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Nanoznanosti in nanotehnologije, 3. stopnja 1 1
Nanosciences and Nanotechnologies, 3rd cycle 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
NANO3-904
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Anton Kokalj
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključena izobrazba druge stopnje bolonjskega študija ali univerzitetna izobrazba s področja naravoslovja ali tehnologije.

Completed 2nd level cycle degree of the Bologna study or equivalent university education from natural sciences or technology.

Vsebina:
Content (Syllabus outline):

1. Uvod v teorijo gostotnega funkcionala (angl. DFT)
2. Translacijska simetrija: Blochov izrek, recipročni »k« prostor, Brillouinova cona
3. Gostota stanj, struktura pasov, Fermijeva energija; kovine, polprevodniki, izolatorji
4. Strukturne optimizacije, molekulska dinamika in izračuni vibracijskih lastnosti
5. Izračun energijskih razlik: jakost vezi, kohezivne, tvorbene, adsorpcijske in reakcijske energije
6. Trdne površine: izračun površinskih energij in izstopnega dela; problem polarnih površin
7. Analiza kemijskih vezi: molekulske orbitale, razlika elektronskih gostot, »projecirana« gostota stanj, donacija in povratna donacija naboja
8. Simulacija slik STM
9. Kako modelirati kemijske reakcije: prehodna stanja in aktivacijske energije
10. Praktični uvod v molekulsko modeliranje z računalnikom: narediti simulacijo z uporabo prosto dostopne programske opreme in odprtokodnih orodij

1. Introduction to Density-Functional-Theory
2. Translational symmetry: Bloch theorem, reciprocal »k« space, Brillouin zone
3. Density-of-states, band-structure, Fermi energy; metals, semiconductors, insulators
4. Structural relaxations, molecular dynamics simulations, and vibrational calculations
5. Calculation of energy differences: bond strengths, cohesive, formation, adsorption, and reaction energies
6. Solid surfaces: calculation of surface-free energies and work functions; the problem of polar surfaces
7. Analysis of chemical bonding: molecular orbitals, charge density differences, projected density-of-states, charge donation, and back-donation
8. Simulation of STM images
9. How to model chemical reactions: transition states and activation energies
10. Practical introduction to molecular modeling with a computer: do a simulation yourself using free software and open-source tools

Temeljna literatura in viri / Readings:

R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future”, Reviews of Modern
Physics, Vol. 87, pp. 897–923, 2015.
Roald Hoffmann, “Solids and surfaces: A chemist’s view of bonding in extended structures”, (Wiley-VCH,
New York, 1988). ISBN 0-471-18710-0.
R. M. Martin, “Electronic Structure: Basic Theory and Practical Methods”, (Cambridge University Press,
Cambridge. 2004). ISBN 978-0-521-78285-2.
C. D. Taylor and P. Marcus (Eds.) “Molecular modeling of corrosion processes”, (Wiley, Hoboken, New
Jersey, 2015). ISBN 978-1-118-26615-1.
B. Hammer, J. K. Norskov, “Theoretical surface science and catalysis – Calculations and concepts”,
Advances in Catalysis, Vol. 45 (2000) 71–129.

Cilji in kompetence:
Objectives and competences:

Študentke in študenti se bo najprej seznanili z osnovami teorije gostotnega funkcionala (angl. DFT) in tako pridobil osnovna znanja, potrebna za praktično molekulsko modeliranje. Namen tega predmeta je naučiti študenta samostojno »poganjati« molekulske simulacije in analizirati rezultate simulacij. Poudarek bo na uporabi prosto dostopnih in odprtokodnih programskih paketov in orodij, kot je npr. Quantum ESPRESSO ali kateri koli drug programski paket po izboru študenta.

V okviru tega predmeta bomo obravnavali tako (1) molekulske (molekule, nanodelci) kot (2) periodične sisteme (površine in trdnine) in razložili specifičnosti pri modeliranju obeh vrst sistemov. Obravnavali bomo praktični primer modeliranja površine in molekulske adsorpcije.

Splošne kompetence:
- obvladanje raziskovalnih metod, pomembnih za molekulsko modeliranje
- sposobnost uporabe molekulskega modeliranja na svojem specifičnem področju raziskav
- razvoj komunikacijskih veščin in komunikacije v mednarodnem okolju
- sposobnost samostojnega dela in timskega dela v skupini (v mednarodnem okolju)

Predmetno-specifične kompetence:
- študent se bo naučil, kako samostojno uporabljati molekulsko modeliranje, tj. kako zgraditi adekvaten model iz osnovnih gradnikov v nizu korakov molekulskega modeliranja in kako »poganjati« molekulske simulacije

Students will be first introduced to the fundamentals of density-functional theory (DFT) to gain the basic knowledge needed for practical molecular modeling. The purpose of this course is to teach the students how to make molecular simulations with a computer on their own and how to analyze the results. Emphasis will be given to free-software and open-source tools, such as Quantum ESPRESSO or any other software package of the student’s preference.

This course will provide a link between (1) finite (molecules, clusters, nanoparticles) and (2) extended systems (surfaces and bulk solids) by teaching the student about specifics in modeling the two kinds of systems. A practical example of modeling surfaces and adsorption thereon will be given.

General competencies:
- the student will learn research methods relevant to ab initio molecular modeling
- the student will learn how to exploit molecular modeling in her/his specific area of research
- the student will develop communication skills to present research achievements in an international environment
- the student will learn to work independently and in a team (in an international environment)

Course-specific competences:
- the student will learn how to start a molecular modeling project from scratch, that is, to build a fully-fledged model from basic constituents in a series of molecular modeling steps

Predvideni študijski rezultati:
Intendeded learning outcomes:

Funkcionalno znanje o metodah molekulskega modeliranja in o tehnikah, ki jih uporabljamo pri molekulskih simulacijah.

Študenti bodo sposobni samostojno “poganjati” molekulske simulacije.

Študenti bodo sposobni uporabljati molekulsko modeliranje na svojem specifičnem področju raziskav.

The students will obtain an overview of the DFT molecular modeling methods and simulation techniques.

The students will acquire functional know-how to make a molecular modeling simulation from scratch.

The students will be able to apply molecular modeling in their specific area of research.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminar, laboratorijsko delo (praktično delo z računalnikom – simulacije), konzultacije.

Lectures, seminars, and “virtual laboratory” (i.e., practical computer simulations), and consultations.

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminar
50 %
Seminar
Ustni izpit
50 %
Oral exam
Reference nosilca / Lecturer's references:
1. GAŠPARIČ, Lea, PINTAR, Albin, KOKALJ, Anton. A DFT study of elementary reaction steps of dry reforming of methane catalyzed by Ni: explaining the difference between Ni particles supported on CeO2 and MnOx−doped CeO2. Applied Surface Science. 2024, vol. 648, article no. 159029, doi:10.1016/j.apsusc.2023.159029. [COBISS.SI-ID 175126275]
2. KOKALJ, Anton. Corrosion inhibitors: physisorbed or chemisorbed? Corrosion science. 2022, vol. 196, article no. 109939, doi: 10.1016/j.corsci.2021.109939. [COBISS.SI-ID 84888323]
3. KOKALJ, Anton. Molecular modeling of organic corrosion inhibitors: calculations, pitfalls, and conceptualization of molecule-surface bonding. Corrosion science. 2021, vol. 193, article no. 109650, doi: 10.1016/j.corsci.2021.109650. [COBISS.SI-ID 84887299]
4. KOKALJ, Anton, COSTA, Dominique. Model study of penetration of Cl− ions from solution into organic self-assembled-monolayer on metal substrate. Journal of The Electrochemical Society. 2021, vol. 168, article no. 071508, doi: 10.1149/1945-7111/ac0a24. [COBISS.SI-ID 66705667]
5. POBERŽNIK, Matic, CHITER, Fatah, MILOŠEV, Ingrid, MARCUS, Philippe, COSTA, Dominique, KOKALJ, Anton. DFT study of n-alkyl carboxylic acids on oxidized aluminum surfaces: from standalone molecules to self-assembled-monolayers. Applied Surface Science. 2020, vol. 525, article no. 146156, doi: 10.1016/j.apsusc.2020.146156. [COBISS.SI-ID 33297959]