Učni načrt predmeta

Predmet:
Napredni IKT pristopi
Course:
Advanced ICT Approaches
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Informacijske in komunikacijske tehnologije, 3. stopnja vsi 1 1
Information and Communication Technologies, 3rd cycle all 1 1
Vrsta predmeta / Course type
Obvezni / Mandatory
Univerzitetna koda predmeta / University course code:
IKT3-911
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 240 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
doc. dr. Tome Eftimov
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
Slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij druge stopnje s področja informacijskih ali komunikacijskih tehnologij ali zaključen študij druge stopnje na drugih področjih z znanjem osnov s področja predmeta. Potrebna so tudi osnovna znanja matematike, računalništva in informatike.

Completed second cycle studies in information or communication technologies or completed second cycle studies in other fields with knowledge of fundamentals in the field of this course. Basic knowledge of mathematics, computer science and informatics is also requested.

Vsebina:
Content (Syllabus outline):

Študenti se bodo seznanili z naprednimi znanstvenimi vsebinami na področju študijskega programa tretje stopnje informacijskih in komunikacijskih tehnologij (tehnologije znanja, inteligentni sistemi in robotika, komunikacijske tehnologije, računalniške strukture in sistemi, napredne internetne tehnologije). Pregled naprednih tehnik na področjih študija bo podan na sistematičen način, ki bo vključeval pregled
aktualnih raziskovalnih rezultatov ter nove raziskovalne izzive.

Students will get an overview of the advanced scientific topics of the third-level study program Information and Communication Technologies (knowledge technologies, intelligent systems and robotics, communication technologies, computer structures and systems, advanced Internet technologies). Review of the advanced topics in the study areas will be presented in a systematic way, which will include a review current research results and new research challenges.

Temeljna literatura in viri / Readings:

Izbrani znanstveni članki in ostala znanstvena literatura s področja obravnavanih vsebinskih področji informacijskih in komunikacijskih tehnologij (tehnologije znanja, inteligentni sistemi in robotika,
komunikacijske tehnologije, računalniške strukture in sistemi, napredne internetne tehnologije). / Selected scientific articles in the field of information and communication technologies (knowledge technologies, intelligent systems and robotics, communication technologies, computer structures and systems, advanced
Internet technologies).

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je pridobitev celostnega pregleda najnovejših raziskav in izzivov na področjih vsebinskih sklopov doktorskega študijskega programa IKT z vidika sedanjega stanja raziskav in njihovega bodočega razvoja.

Pomemben cilj je pridobiti poznavanje tematik celotnega doktorskega študijskega programa IKT ter s tem zagotoviti širino kot tudi globino znanja, nujno potrebnega za pravilno umestitev konkretnega raziskovalnega dela študenta v širše
raziskovalno področje IKT ter uspešno povezovanje z drugimi raziskovalnimi področji.

The aim of the course is to obtain a comprehensive overview of recent advances and challenges within the topics of all the modules of the ICT doctoral study program in terms of its research state of the art and its future development.

An important goal is to obtain a comprehensive understanding of the topics of the entire ICT doctoral study program, thus ensuring broadness as well as depth of knowledge that is indispensable for placing the student's own research in the broader ICT research area and its successful integration with
other research fields.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Celosten pregled študijskega področja, razumevanje naprednih tehnik in bodočih znanstvenih usmeritev. Študenti bodo tako pridobili napredno znanje o IKT in sposobnost suverenega komuniciranja tako znotraj področja raziskav IKT kot tudi z drugimi raziskovalnimi
področji.

Comprehensive overview of the study field, understanding of advanced techniques and the future research directions. Students will thus acquire advanced knowledge of ICT and the ability of competent communication both within the field of ICT and with other research areas.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, konzultacije, druge metode

Lectures, consultations, other methods

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Pisni izpit
100
Written exam
Reference nosilca / Lecturer's references:
1. • Kostovska, A., Vermetten, D., Korošec, P., Džeroski, S., Doerr, C., & Eftimov, T. (2024). Using Machine Learning Methods to Assess Module Performance Contribution in Modular Optimization Frameworks. Evolutionary Computation, 1-27.
2. •. Cenikj, G., Petelin, G., & Eftimov, T. (2024). A cross-benchmark examination of feature-based algorithm selector generalization in single-objective numerical optimization. Swarm and Evolutionary Computation, 87, 101534.
3. • Ispirova, G., Eftimov, T., Džeroski, S., & Seljak, B. K. (2024). MsGEN: Measuring generalization of nutrient value prediction across different recipe datasets. Expert Systems with Applications, 237, 121507.WALL, David P., DELGADO, Antonio, O'SULLIVAN, Lilian, CREAMER, Rachel, TRAJANOV, Aneta, KUZMANOVSKI, Vladimir, HENRICKSEN, Christian B., DEBELJAK, Marko. A decision support model for assessing the water regulation and purification potential of agricultural soils across Europe. Frontiers in sustainable food systems. [in press] 2020, 15 str. ISSN 2571-581X. DOI: 10.3389/fsufs.2020.00115
4. • Cenikj, G., Strojnik, L., Angelski, R., Ogrinc, N., Koroušić Seljak, B., & Eftimov, T. (2023). From language models to large-scale food and biomedical knowledge graphs. Scientific reports, 13(1), 7815.
5. • Eftimov, T., & Korošec, P. (2022). Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms. Springer Nature.