1. |
Kostovska, A., Cenikj, G., Vermetten, D., Jankovic, A., Nikolikj, A., Skvorc, U., ... & Eftimov, T. (2023, September). PS-AAS: Portfolio Selection for Automated Algorithm Selection in Black-Box Optimization. In International Conference on Automated Machine Learning (AutoML 2023).
|
2. |
Kostovska, A., Vermetten, D., Džeroski, S., Panov, P., Eftimov, T., & Doerr, C. (2023, April). Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 253-268). Cham: Springer Nature Switzerland
|
3. |
Petelin, G., Cenikj, G., & Eftimov, T. (2023). Towards understanding the importance of time-series features in automated algorithm performance prediction. Expert Systems with Applications, 213, 119023
|
4. |
Nikolikj, A., Doerr, C., & Eftimov, T. (2023, April). RF+ clust for Leave-One-Problem-Out Performance Prediction. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 285-301). Cham: Springer Nature Switzerland
|
5. |
Kostovska, A., Jankovic, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov, T., & Doerr, C. (2022, August). Per-run algorithm selection with warm-starting using trajectory-based features. In International Conference on Parallel Problem Solving from Nature (pp. 46-60). Cham: Springer International Publishing
|