Učni načrt predmeta

Predmet:
Napredno procesiranje materialov
Course:
Advanced Materials Processing
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Nanoznanosti in nanotehnologije, 2. stopnja 1 1
Nanosciences and Nanotechnologies, 2nd cycle 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
NANO2-916
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 210 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Uroš Cvelbar
Sodelavci / Lecturers:
doc. dr. Martina Modic , doc. dr. Janez Zavašnik
Jeziki / Languages:
Predavanja / Lectures:
Slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij prve stopnje naravoslovne ali tehniške smeri ali zaključen študij drugih smeri z dokazanim poznavanjem osnov področja predmeta (pisna dokazila, pogovor).

Completed first-cycle studies in natural sciences or engineering or completed second-cycle studies in other fields with proven knowledge of fundamentals in the field of this course (certificates, interview).

Vsebina:
Content (Syllabus outline):

- Pregled procesnih plazem
- Nizkotlačne in atmosferske plazme
- Uporaba plazem v industrijskih procesih za obdelavo materialov
- Plazemska aktivacija površin
- Selektivno plazemsko jedkanje materialov
- Nano-strukturiranje površin
- Uporaba reaktivne plazme v procesih
- Uporaba plazemskih metod in procesnih tehnik
- Osnovne interakcije na meji plazma-površina
- Nastanek 1D, 2D ali 3D nanostruktur ter vloga plazemskih delcev kot osnovnih gradnikov
- Plazemska sinteza (nano)materialov
- Hladno upepeljevanje
- Razgradnja toksičnih snovi
- Plazemska obdelava tekočin in obdelava odpadnih voda
- Dekontaminacija površin
- Študije primerov uporabe (Polimerni kompoziti in tehnologije za njihovo obdelavo, plazemska obdelava odpadnih voda, priprava plazmonskih materialov, ipd.)

- Overview of processing plasmas
- Low-pressure versus atmospheric pressure plasmas
- Application of plasmas into industrial processes for material treatment
- Plasma surface activation
- Selective etching of materials
- Nanostructuring surfaces
- Use of reactive plasma in processes
- Use of plasma methods and process techniques
- Basic interactions at the plasma-surface interface
- Formation of 1D, 2D or 3D nanostructures and the role of plasma particles as basic building blocks
- Plasma synthesis of (nano)materials
- Cold ashing
- Degradation of toxic materials
- Plasma treatment of liquids and wastewater remediation
- Decontamination of surfaces
- Case studies (Polymer composites and technologies for their treatments, Plasma wastewater remediation, Preparation of plasmonic nanomaterials, etc.)

Temeljna literatura in viri / Readings:

F.F. Chen, J.P. Chang: Lecture Notes on Principles of Plasma Processing, Springer, 2013.
M. Sankaran (ed): Plasma Processing of Nanomaterials, CRC, 2011.
H. Rauscher, M. Perucca, G. Buyle (ed): Plasma Technologies for Hyperfunctional Surfaces: Food, Biomedical and Textile Applications, Wiley-VCH, 2010.
J. Friedrich: The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design, Wiley, 2012.
M. Keidar, I. Beilis, “Plasma Engineering – Applications from Aerospace to Bio and Nanotechnology”, 2013, Elsevier, ISBN 9780123859785.
A. Fridman and L.A. Kennedy, Plasma Physics and Engineering, 3rd ed., CRC Press, 2023. ISBN-13-978-0367697525.
A. Fridman, Plasma Science and Technology: Lectures in Physics, Chemistry, Biology, and Engineering, Wiley 2023. ISBN-13-987-3527349548.

Ciljani izbor in razprava o aktualnih znanstvenih objavah, predvsem v revijah Science, Nature, Advanced Materials, Nanotechnology, ipd. / Targeted selection and discussion of scientific publications, particularly from Science, Nature, Advanced Materials, Nanotechnology, etc.

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je seznanitev študentov z naprednimi obdelavami materialov, vključno s plazemsko nanoznanostjo, ki temeljijo predvsem na uporabi termodinamsko neravnovesnih stanj plinov oz. plazemskih obdelavah. Te obdelave so namreč ekološko neoporečne, omogočajo pa spremembe ali sinteze materialov na atomarnem nivoju gradnik-po-gradnik. Med procesnimi plazmami so se uveljavile predvsem nizkotlačne in atmosferske plazme, ki so primerne tudi za široko industrijsko uporabo. Pri predmetu študenti spoznajo osnovne interakcije plazme z materiali in procese, ki vodijo do njihove aktivacije, selektivnega jedkanja, hladnega upepeljevanja, nanostrukturiranja ali sinteze novih materialov. Spoznajo tudi plazemske procese za razgradnje toksičnih substanc in materialov ter dekontaminacije površin. Predavanja vsebujejo tudi prikaz nekaterih tehnoloških rešitev v industriji, kar omogoča študentom kritično oceno uporabnosti novih procesnih tehnologij za materiale v praksi.

The objective of this course is to introduce students with advanced processing of materials, including plasma nanoscience, which are based mostly on use of thermodynamically nonequilibrium states of gas called plasma processing. The major benefits of this processing are ecological advantages and modifications or synthesis of materials on atomic scale atom-by-atom. The most useful plasmas for industrial environment are low or atmospheric pressure processing plasmas. Within this course, students gain knowledge on principles of plasma-surface interactions and material processing, which leads to surface activation, selective etching, cold ashing, surface nanostructuring and synthesis of new materials. Students become familiar with plasma processes for degradation of toxic materials and decontamination of surfaces. The lectures include the case studies of technological solutions for industrial applications, which enable students’ critical assessment of applicability of processing technologies for materials in practice.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Študent bo na osnovi pridobljenega znanja:
- razumel lastnosti posameznih plazem in procesov, ki potekajo ob interakciji plazme z materiali;
- izbral primerno okolju prijazno in učinkovito tehnoloških rešitev za obdelavo materialov;
- razumel fizikalne in kemijske postopke, ki potekajo v teh procesih;
- spoznal ekonomske vidike za uporabo teh tehnoloških postopkov v industrijskem okolju;
- spoznal osnovne plazemske nanoznanosti;
- razumel nove koncepte in pristope na področju plazemske nanoznanosti, ki vključujejo uporabo naprednih metod, procesov in tehnologij za izdelavo ali oblikovanje nanostruktur s pomočjo plazme;
- izbral primerno metodo za sintezo ali spreminjanje nanomaterialov;
- znal interpretirati rezultate meritev
- vzpostavil sposobnost komunikacije v angleškem jeziku na področju materialov in tehnologije za njihovo obdelavo.

The student will:
- understand the plasma properties and processes, which occur during plasma material processing;
- select a proper advanced environmentally friendly technological procedures for material processing;
- understand underlying physical and chemical mechanisms of these processes;
- learn about the commercial perspectives of the implementation of these technological procedures into industrial environment;
- learn the basic knowledge of plasma nanoscience;
- understand the new concepts and approaches in the field of plasma nanoscience, including advanced methods, processes and technologies for building or modifying nanostructures with plasma;
- select a suitable data method for synthesis or modification of nanomaterials;
- interpret the results of a measurements;
- establish the ability to communicate in English in the field of materials and technologies for their treatment.

Metode poučevanja in učenja:
Learning and teaching methods:

Interaktivna predavanja, seminar, delo v laboratoriju, konzultacije.

Interactive lectures, seminar, work in laboratory, consultations.

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminarska naloga
50
Seminar work.
Zagovor seminarske naloge, pri katerem študent dokaže osvojitev vseh študijskih izidov z vsaj po enim konkretnim primerom
50
Defense of the seminar work where the student demonstrates the achievement of all learning outcomes with at least one specific case for each outcome.
Reference nosilca / Lecturer's references:
1. SANTHOSH, Neelakandan Marath, UPADHYAY, Kush K., FILIPIČ, Gregor, ZAVAŠNIK, Janez, MONTEMOR, Maria de Fátima, CVELBAR, Uroš. Widening the limit of capacitance at high frequency for AC line-filtering applications using aqueous carbon-based supercapacitors. Carbon. [Print ed.]. 2023, vol. 203, str. 686-694. ISSN 0008-6223. DOI: 10.1016/j.carbon.2022.12.026
2. DIAS, Ana, ZAVAŠNIK, Janez, TATAROVA, Elena, CVELBAR, Uroš, et al. Plasma-enabled multifunctional platform for gram-scale production of graphene and derivatives. Applied materials today. Feb. 2024, vol. 36, [article no.] 102056, str. 1-12, ilustr. ISSN 2352-9415. https://www.sciencedirect.com/science/article/pii/S2352940724000027, DOI: 10.1016/j.apmt.2024.102056.
3. OBERLINTNER, Ana, SHVALYA, Vasyl, VASUDEVAN, Aswathy, VENGUST, Damjan, LIKOZAR, Blaž, CVELBAR, Uroš, NOVAK, Uroš. Hydrophilic to hydrophobic : ultrafast conversion of cellulose nanofibrils by cold plasma fluorination. Applied Surface Science. [Print ed.]. 15 Apr. 2022, vol. 581, str. 1-8., DOI: 10.1016/j.apsusc.2021.152276.
4. TATAROVA, Elena, DIAS, Ana, DANKOV, Plamen, KISSOVSKI, Jivko, BOTELHO DO REGO, A. M., BUNDALESKA, Elena, FELIZARDO, Edgar, ABRASHEV, Miroslav, SHVALYA, Vasyl, SANTHOSH, Neelakandan Marath, KOŠIČEK, Martin, ZAVAŠNIK, Janez, CVELBAR, Uroš, et al. Plasma-driven tuning of dielectric permittivity in graphene. Small. 2024, art. 2303421, 7 str. ISSN 1613-6829. DOI: 10.1002/smll.202303421.
5. KOVAČIČ, Ana, MODIC, Martina, HOJNIK, Nataša, ŠTAMPAR, Martina, GULIN, Martin Rafael, NANNOU, Christina, KORONAIOU, Lelouda-Athanasia, HEATH, David John, WALSH, James L., ŽEGURA, Bojana, LAMBROPOULOU, Dimitra A., CVELBAR, Uroš, HEATH, Ester. Degradation and toxicity of bisphenol A and S during cold atmospheric pressure plasma treatment. Journal of Hazardous Materials. [Online ed.]. 2023, vol. 454, [article no.] 131478, str. [1]-12, ilustr. https://www.sciencedirect.com/science/article/pii/S0304389423007616?via%3Dihub, DOI: 10.1016/j.jhazmat.2023.131478.